SCBA self contained breathing apparatus quiz
Hazardous environments that require respiratory protection (1)

• Oxygen deficiency
 – Combustion process consumes oxygen
 – Production of toxic gases may displace oxygen
 – Oxygen concentration diluted by other gases during combustion process
 – Physiological effects of reduced oxygen (hypoxia)
 • Normal – 21% oxygen in air
 • 17% oxygen in air
 – Some muscular impairment
 – Increase in respiratory rate
 • 12% oxygen in air
 – Dizziness, headache, rapid fatigue
 • 9% oxygen in air
 – Unconsciousness
 • 6% or less oxygen in air
 – Death occurs in minutes from respiratory failure and concurrent heart failure
Hazardous environments that require respiratory protection (2)

- Elevated temperatures
 - Heated air can damage respiratory tract
 - Excessive heat (120-130 degrees)
 - Blood pressure drop
 - Circulatory failure
 - Inhalation of heated gases
 - Pulmonary edema
 - Death from asphyxiation
 - Respiratory tissue is not immediately reversible with the introduction of fresh, cool air

- Smoke
 - Smoke is a suspension of fine particles of tar, carbon and dust
 - Tar
 - Carbon
 - Dust
 - Provides a means for the condensation of some of the gaseous products of combustion such as aldehydes and organic acids
 - Some of these particles are lethal; some are irritating
 - Size of particles determine how deeply they will penetrate into the lung
Hazardous environments that require respiratory protection (3)

- Toxic gases
 - During fires, a firefighter will be exposed to combinations of irritants and toxicants
 - Each fire will present different products of combustion
 - Combinations may have a synergistic effect
 - Harmful effects of inhaled toxic gases
 - Disease of the lung tissue
 - Impair the oxygen carrying capacity of red blood cells
- Type of toxic gases given off are dependent upon:
 - Nature of the combustion
 - Rate of heating
 - Temperature of involved gases
 - Oxygen concentration at time of combustion
List commonly found fire gases (1)

- Carbon monoxide (CO)
 - More fire deaths occur from exposure to carbon monoxide than any other product of combustion
 - Colorless
 - Odorless
 - Present at every fire
 - Results from incomplete combustion
 - Carbon monoxide combines with the blood’s hemoglobin about 200 times more readily than oxygen causing oxygen to be excluded and eventually hypoxia will result.
 - Concentrations of carbon monoxide above five hundredths of one percent (0.05%) (500 PPM) can be dangerous
 - Symptoms include:
 - Headache
 - Dizziness
 - Nausea
 - Vomiting
 - Cherry-red skin coloration
 - Administering pure oxygen is the most important element in first aid care
 - Brain injuries may appear up to three weeks after a severe exposure
List commonly found fire gases (2)

- Hydrogen chloride
 - Colorless gas
 - Pungent odor
 - Causes swelling of upper respiratory tract
 - Labored breathing
 - Suffocation can result
 - Due to the increased use of plastics, PVC is commonly found at fires
 - Polyvinyl chloride
- Hydrogen chloride
 - Overhaul stage is especially dangerous
 - Latent heat can still decompose plastics
 - Electrical cables may continue to decompose after fire is extinguished
- Hydrogen cyanide
 - Interferes with respiration at the cellular and tissue level
 - Classified as a chemical asphyxiate
 - Colorless gas
 - Noticeable almond odor
 - Materials that emit hydrogen cyanide include:
 - Wool, nylon, polyurethane foam, rubber, paper
 - Concentrations above 270 PPM are almost immediately fatal
List commonly found fire gases (3)

- **Carbon dioxide**
 - Non-flammable
 - Colorless
 - Odorless
 - Concentrations of greater than 10%-12% cause death within a few minutes from paralysis of the brain’s respiratory center
 - Use caution when working around a total Carbon Dioxide (CO$_2$) total flooding system

- **Nitrogen oxides**
 - Nitrogen dioxide
 - Nitric oxide

- **Nitrogen dioxide** is a pulmonary irritant
 - Reddish brown in color
 - Commonly called silo gas
 - Released from pyroxylin plastics
 - Causes pulmonary edema
 - Reacts with water and oxygen to form nitric and nitrous acids
 - Causes arterial dilation, blood pressure variations, dizziness and headache
 - Irritating effects can be tolerated while a lethal dose is being inhaled

- **Phosgene**
 - Colorless, tasteless gas
 - Disagreeable odor
 - Produced when Freon comes into contact with flame
 - When in contact with water, it decomposes into hydrochloric acid
PHYSICAL REQUIREMENTS OF SCBA USER

• Physical
 – Sound physical condition
 – Maximize amount of work that can be performed
 – Maximize available air supply

• Agility
 – Must be agile as the unit will restrict wearer’s movements
 – Will affect balance

• Facial features
 – Need good face piece seal
 – Presence of facial hair may not permit a proper seal including as little as a 24-hour growth

• Medical
 – Good motor coordination needed
 – Must have good physical strength and size
 – Good cardiovascular system
 – Healthy respiratory system

• Mental
 • Adequate training in use of equipment
 • Self-confidence
 • Emotional stability
LIMITATIONS OF SCBA

- Limited visibility
- Decreased ability to communicate
- Increased weight
- Decreased mobility
Basic components of open-circuit SCBA

– Backpack and harness assembly
 • Designed to hold the air cylinder on the firefighter’s back
 • Adjustable harness straps provide a secure fit
 • Waist strap is designed to properly distribute weight of cylinder pack

– Air cylinder assembly
 • Many different sizes available
 • Main weight of the breathing apparatus
 • Cylinder pressures and capacities:
 – Low pressure: 2216 PSI, 45 cubic feet of air
 » Rated to be 30-minute cylinder
 » Expected use of time 12 to 18 minutes
 – Low pressure: 3000 PSI, 66 cubic feet of air
 » Rated as a 45-minute cylinder
 – High pressure: 4500 PSI, 45 cubic feet of air
 » Rated as a 30-minute cylinder
 – High pressure: 4500 PSI, 88 or 90 cubic feet of air
 » Rated as a one hour cylinder
Basic components of open-circuit SCBA

- Regulator
 - Regulator reduces the pressure from the cylinder to slightly above atmospheric pressure and controls the flow to meet the needs of the wearer
 - Bypass valve or purge valve is used as an emergency valve should the regulator fail
 - Pressure gauges are sometimes located on the regulator or in close proximity to the facepiece
 - Should read within 100 PSI of the cylinder gauge
 - All units are required to have an audible low pressure/quarter service alarm

- Facepiece assembly
 - Lens
 - Exhalation valve-one way valve
 - Possibly a low pressure hose
 - Adjustable straps or webbing
 - Speaking diaphragm
Inspection procedure of SCBA

• NFPA 1404 and NFPA 1500 require all SCBA to be inspected:
 – After each use
 – Weekly
 – Monthly
 – Annually

• Periodic inspection and care
 – Check the face piece
 – Check the low pressure hose (if applicable)
 – Check the exhalation valve by inhaling slowly with the thumb or palm over the end of the hose connection and then exhaling slowly
 – Connect the low-pressure hose to the regulator and check the performance of the regulator, by inhaling deeply and quickly, checking to make sure that the regulator supplies a full flow
Inspection procedure of SCBA

– Cleaning and sanitizing of SCBA components
 • Immediately after each use

– Daily inspection procedures
 • Check for full cylinder (minimum 90%)
 • Check all gauges for proper operation (should register within 100 psi of each other)
 • Check low-pressure, quarter service alarm for function
 • Check all hose connections (tight, not leaking)
 • Face piece is clean and operational
 • Straps and harness in good condition and is fully extended
 • Operate bypass and mainline valves
 – Bypass must be returned to closed position after testing